Распределение Пирсона — непрерывное распределение вероятностей, плотность вероятности которого является решением дифференциального уравнения , где числа являются параметрами распределения.[1] Частными случаями распределения Пирсона являются бета-распределение (распределение Пирсона I типа), гамма-распределение (распределение Пирсона III типа), распределение Стьюдента (распределение Пирсона VII типа), показательное распределение (распределение Пирсона X типа), нормальное распределение (распределение Пирсона XI типа). Распределения Пирсона широко используются в математической статистике при сглаживании распределений эмпирических данных. Для аппроксимации распределения вероятностей опытных данных численными методами вычисляют их первые четыре момента, а затем на их основе вычисляют параметры распределения Пирсона.[2]
Распределения Пирсона полностью определяются первыми четырьмя моментами случайной величины. Пусть является центральным моментом случайной величины, имеющей распределение Пирсона. Тогда, если , то
- ,
- ,
- ,
- ,
где .[1]
В зависимости от распределения корней квадратного трёхчлена различают 12 типов распределений Пирсона. Обозначим , .[1]
Распределениями Пирсона I типа являются бета — распределения.
Условия: , ,
,
Плотность вероятности: , где
,
.[1]
Условия как для I типа с дополнительными условиями .[1]
Распределениями Пирсона III типа являются гамма-распределения.
Условия: , ,
.
Плотность вероятности: .[1]
Условия: , ,
.
Плотность вероятности:
,
, , где
.[3]
Условия: , ,
.
Плотность вероятности: .[3]
Условия: , ,
.
Плотность вероятности: .[3]
Распределением Пирсона VII типа является распределение Стьюдента.
Условия: , ,
.
Плотность вероятности:
,
, .[3]
Условия: , ,
.
Плотность вероятности: .[3]
Условия: , ,
.
Плотность вероятности: . [3]
Распределением Пирсона X типа является показательное распределение.
Условия: , ,
, .
Плотность вероятности: [2]
Распределением Пирсона XI типа является нормальное распределение.
Условия: , неопределённо,
.
Плотность вероятности: .[2]
Условия как для I типа с дополнительными условиями .[1]
Ссылки на внешние ресурсы |
---|
| |
---|
Словари и энциклопедии | |
---|
|
---|
Дискретные | |
---|
Абсолютно непрерывные | |
---|